Cargando…
Overexpression of immunoglobulin G prompts cell proliferation and inhibits cell apoptosis in human urothelial carcinoma
Only B lymphocytes can express immunoglobulins according to the traditional immunological theories, and the expression of immunoglobulin G (IgG) messenger RNA (mRNA) and protein was found in certain human cancer cells recently. However, the expression pattern of IgG and its possible role in human ur...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661916/ https://www.ncbi.nlm.nih.gov/pubmed/23483488 http://dx.doi.org/10.1007/s13277-013-0717-z |
Sumario: | Only B lymphocytes can express immunoglobulins according to the traditional immunological theories, and the expression of immunoglobulin G (IgG) messenger RNA (mRNA) and protein was found in certain human cancer cells recently. However, the expression pattern of IgG and its possible role in human urothelial carcinoma are still elusive. In this study, we investigated the expression of IgG in two human urothelial carcinoma cell lines, T24 and BIU-87, and in 56 cases of clinical urothelial carcinoma tissues. The mRNA of IgG was positively detected by in situ hybridization and reverse transcription PCR; furthermore, IgG protein was also positively detected by immunohistochemistry and Western blot. Moreover, blockade of tumor-derived IgG by either antihuman IgG antibody or antisense oligonucleotides increased cell apoptosis and inhibited cell growth in bladder cancer cell lines in vitro, and antihuman IgG antibody could suppress the growth of xenotransplant tumor in vivo. In addition, either antihuman IgG antibody or antisense oligonucleotides enhanced the sensitivity to mitomycin C in bladder cancer cell line T24. Furthermore, blockade of IgG in bladder cancer cell T24 resulted in upregulation of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. Our results indicated that bladder cancer cells were capable of expressing IgG, and blockade of IgG expression induced cell apoptosis through activation of caspase-dependent pathway. A novel potential targeted therapy for bladder cancer will be possibly developed based on these data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13277-013-0717-z) contains supplementary material, which is available to authorized users. |
---|