Cargando…
Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm
This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery...
Autores principales: | Khotanlou, Hassan, Afrasiabi, Mahlagha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662104/ https://www.ncbi.nlm.nih.gov/pubmed/23724371 |
Ejemplares similares
-
Segmentation of Multiple Sclerosis Lesions in Brain MR Images Using Spatially Constrained Possibilistic Fuzzy C-Means Classification
por: Khotanlou, Hassan, et al.
Publicado: (2011) -
Application of Genetic Algorithm-Based Support Vector Machine in Identification of Gene Expression Signatures for Psoriasis Classification: A Hybrid Model
por: Tapak, Leili, et al.
Publicado: (2021) -
Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)
por: HosseiniPanah, S., et al.
Publicado: (2019) -
Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization
por: Jia, Heming, et al.
Publicado: (2021) -
EEG Microstate Features as an Automatic Recognition Model of High-Density Epileptic EEG Using Support Vector Machine
por: Yang, Li, et al.
Publicado: (2022)