Cargando…
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swa...
Autores principales: | Lim, Kian Sheng, Ibrahim, Zuwairie, Buyamin, Salinda, Ahmad, Anita, Naim, Faradila, Ghazali, Kamarul Hawari, Mokhtar, Norrima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662110/ https://www.ncbi.nlm.nih.gov/pubmed/23737718 http://dx.doi.org/10.1155/2013/510763 |
Ejemplares similares
-
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
por: Lim, Kian Sheng, et al.
Publicado: (2014) -
Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal
por: Adam, Asrul, et al.
Publicado: (2016) -
Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals
por: Adam, Asrul, et al.
Publicado: (2016) -
Particle swarm optimisation: classical and quantum perspectives
por: Sun, Jun, et al.
Publicado: (2016) -
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
por: Mohamad, Mohd Saberi, et al.
Publicado: (2013)