Cargando…
The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly
BACKGROUND: This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regres...
Autores principales: | Hsieh, Kuen-Chang, Chen, Yu-Jen, Lu, Hsueh-Kuan, Lee, Ling-Chun, Huang, Yong-Cheng, Chen, Yu-Yawn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662169/ https://www.ncbi.nlm.nih.gov/pubmed/23388042 http://dx.doi.org/10.1186/1475-2891-12-21 |
Ejemplares similares
-
Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children
por: Lee, Li-Wen, et al.
Publicado: (2017) -
Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population
por: Chen, Kuen-Tsann, et al.
Publicado: (2016) -
Standing 8-Electrode Bioelectrical Impedance Analysis as an Alternative Method to Estimate Visceral Fat Area and Body Fat Mass in Athletes
por: Lee, Ling-Chun, et al.
Publicado: (2021) -
Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals
por: Wu, Chun-Shien, et al.
Publicado: (2015) -
Prediction and discrimination of skeletal muscle function by bioelectrical impedance vector analysis using a standing impedance analyzer in healthy Taiwanese adults
por: Lee, Li-Wen, et al.
Publicado: (2020)