Cargando…
Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations
Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of...
Autores principales: | Cai, Xiaodong, Bazerque, Juan Andrés, Giannakis, Georgios B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662697/ https://www.ncbi.nlm.nih.gov/pubmed/23717196 http://dx.doi.org/10.1371/journal.pcbi.1003068 |
Ejemplares similares
-
Inferring propagation paths for sparsely observed perturbations on complex networks
por: Massucci, Francesco Alessandro, et al.
Publicado: (2016) -
Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations
por: Li, Yan, et al.
Publicado: (2020) -
Inference of regulatory networks through temporally sparse data
por: Alali, Mohammad, et al.
Publicado: (2022) -
Efficient proximal gradient algorithm for inference of differential gene networks
por: Wang, Chen, et al.
Publicado: (2019) -
Inference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations
por: Kim, Dong-Chul, et al.
Publicado: (2014)