Cargando…
Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm
A valid unsupervised and multiscale segmentation of synthetic aperture radar (SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization (EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive (MMAR) model is introduced to characterize and exploit th...
Autores principales: | Wen, Xian-Bin, Zhang, Hua, Jiang, Ze-Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663018/ https://www.ncbi.nlm.nih.gov/pubmed/27879787 |
Ejemplares similares
-
An unsupervised image segmentation algorithm for coronary angiography
por: Yin, Zong-Xian, et al.
Publicado: (2022) -
Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery
por: Marapareddy, Ramakalavathi, et al.
Publicado: (2016) -
An Auto-Recognizing System for Dice Games Using a Modified Unsupervised Grey Clustering Algorithm
por: Huang, Kuo-Yi
Publicado: (2008) -
Multiscale Co‐reconstruction of Lung Architectures and Inhalable Materials Spatial Distribution
por: Sun, Xian, et al.
Publicado: (2021) -
Unsupervised SAR Imagery Feature Learning with Median Filter-Based Loss Value
por: Gromada, Krzysztof
Publicado: (2022)