Cargando…

Development and Demonstration of Measurement-Time Efficient Methods for Impedance Spectroscopy of Electrode and Sensor Arrays

The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, Kevin R., Smith, Matthew, Johnson, Derek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663023/
https://www.ncbi.nlm.nih.gov/pubmed/27879792
Descripción
Sumario:The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays. The objective of this work was to substantially increase the low frequency impedance measurement throughput capability of a large channel count array analyzer by developing true parallel measurement methods. The goal was achieved by Fourier transform-based analysis of simultaneously-acquired multi-channel time-based current and voltage data. Efficacy and quantitative analysis of the parallel approach at frequencies less than ca. 10 Hz as well as a combined sequential + parallel approach for efficient broadband impedance spectroscopy over 5-orders of magnitude in frequency is demonstrated through complex impedance measurement of arrays consisting of up to 100 elements.