Cargando…
CGAL: computing genome assembly likelihoods
Assembly algorithms have been extensively benchmarked using simulated data so that results can be compared to ground truth. However, in de novo assembly, only crude metrics such as contig number and size are typically used to evaluate assembly quality. We present CGAL, a novel likelihood-based appro...
Autores principales: | Rahman, Atif, Pachter, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663106/ https://www.ncbi.nlm.nih.gov/pubmed/23360652 http://dx.doi.org/10.1186/gb-2013-14-1-r8 |
Ejemplares similares
-
SWALO: scaffolding with assembly likelihood optimization
por: Rahman, Atif, et al.
Publicado: (2021) -
Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL
por: Wang, Bowen, et al.
Publicado: (2020) -
Application of the red-shifted channel rhodopsin Chrimson for the Caenorhabditis elegans cGAL bipartite system
por: Cao, Mengyi, et al.
Publicado: (2018) -
DVC interneuron cGAL driver in Caenorhabditis elegans
por: Oh, Jun Young, et al.
Publicado: (2019) -
CGAL Arrangements and Their Applications: A Step-by-Step Guide
por: Fogel, Efi, et al.
Publicado: (2012)