Cargando…

Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress

Plant photosynthesis and photosystem II (PSII) are susceptible to high temperature. However, photosynthetic electron transport process under heat stress remains unclear. To reveal this issue, chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected in sweet sorghum. At...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Kun, Chen, Peng, Shao, Hongbo, Shao, Chuyang, Zhao, Shijie, Brestic, Marian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663741/
https://www.ncbi.nlm.nih.gov/pubmed/23717388
http://dx.doi.org/10.1371/journal.pone.0062100
_version_ 1782271031643209728
author Yan, Kun
Chen, Peng
Shao, Hongbo
Shao, Chuyang
Zhao, Shijie
Brestic, Marian
author_facet Yan, Kun
Chen, Peng
Shao, Hongbo
Shao, Chuyang
Zhao, Shijie
Brestic, Marian
author_sort Yan, Kun
collection PubMed
description Plant photosynthesis and photosystem II (PSII) are susceptible to high temperature. However, photosynthetic electron transport process under heat stress remains unclear. To reveal this issue, chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected in sweet sorghum. At 43°C, J step in the chlorophyll a fluorescence transient was significantly elevated, suggesting that electron transport beyond primary quinone of PSII (Q(A)) (primary quinone electron acceptor of PSII) was inhibited. PSI (Photosystem I) photochemical capacity was not influenced even under severe heat stress at 48°C. Thus, PSI oxidation was prolonged and PSI re-reduction did not reach normal level. The inhibition of electron transport between PSII and PSI can reduce the possibility of PSI photoinhibition under heat stress. PSII function recovered entirely one day after heat stress at 43°C, implying that sweet sorghum has certain self-remediation capacity. When the temperature reached 48°C, the maximum quantum yield for primary photochemistry and the electron transport from PSII donor side were remarkably decreased, which greatly limited the electron flow to PSI, and PSI re-reduction suspended. The efficiency of an electron transferred from the intersystem electron carrier (plastoquinol, PQH(2)) to the end electron acceptors at the PSI acceptor side increased significantly at 48°C, and the reason was the greater inhibition of electron transport before PQH(2). Thus, the fragment from Q(A) to PQH(2) is the most heat sensitive in the electron transport chain between PSII and PSI in sweet sorghum.
format Online
Article
Text
id pubmed-3663741
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36637412013-05-28 Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress Yan, Kun Chen, Peng Shao, Hongbo Shao, Chuyang Zhao, Shijie Brestic, Marian PLoS One Research Article Plant photosynthesis and photosystem II (PSII) are susceptible to high temperature. However, photosynthetic electron transport process under heat stress remains unclear. To reveal this issue, chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected in sweet sorghum. At 43°C, J step in the chlorophyll a fluorescence transient was significantly elevated, suggesting that electron transport beyond primary quinone of PSII (Q(A)) (primary quinone electron acceptor of PSII) was inhibited. PSI (Photosystem I) photochemical capacity was not influenced even under severe heat stress at 48°C. Thus, PSI oxidation was prolonged and PSI re-reduction did not reach normal level. The inhibition of electron transport between PSII and PSI can reduce the possibility of PSI photoinhibition under heat stress. PSII function recovered entirely one day after heat stress at 43°C, implying that sweet sorghum has certain self-remediation capacity. When the temperature reached 48°C, the maximum quantum yield for primary photochemistry and the electron transport from PSII donor side were remarkably decreased, which greatly limited the electron flow to PSI, and PSI re-reduction suspended. The efficiency of an electron transferred from the intersystem electron carrier (plastoquinol, PQH(2)) to the end electron acceptors at the PSI acceptor side increased significantly at 48°C, and the reason was the greater inhibition of electron transport before PQH(2). Thus, the fragment from Q(A) to PQH(2) is the most heat sensitive in the electron transport chain between PSII and PSI in sweet sorghum. Public Library of Science 2013-05-24 /pmc/articles/PMC3663741/ /pubmed/23717388 http://dx.doi.org/10.1371/journal.pone.0062100 Text en © 2013 Yan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Yan, Kun
Chen, Peng
Shao, Hongbo
Shao, Chuyang
Zhao, Shijie
Brestic, Marian
Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title_full Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title_fullStr Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title_full_unstemmed Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title_short Dissection of Photosynthetic Electron Transport Process in Sweet Sorghum under Heat Stress
title_sort dissection of photosynthetic electron transport process in sweet sorghum under heat stress
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663741/
https://www.ncbi.nlm.nih.gov/pubmed/23717388
http://dx.doi.org/10.1371/journal.pone.0062100
work_keys_str_mv AT yankun dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress
AT chenpeng dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress
AT shaohongbo dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress
AT shaochuyang dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress
AT zhaoshijie dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress
AT bresticmarian dissectionofphotosyntheticelectrontransportprocessinsweetsorghumunderheatstress