Cargando…
Non-redundant coding of aversive odours in the main olfactory pathway
Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons which express a large repertoire of canonical odorant receptors (ORs) and a much smaller repertoire of Trace Amine-Associated Receptors (TAARs)(1–4). Odour...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663888/ https://www.ncbi.nlm.nih.gov/pubmed/23624375 http://dx.doi.org/10.1038/nature12114 |
Sumario: | Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons which express a large repertoire of canonical odorant receptors (ORs) and a much smaller repertoire of Trace Amine-Associated Receptors (TAARs)(1–4). Odours are encoded in a combinatorial fashion across glomeruli in the main olfactory bulb, with each glomerulus corresponding to a different receptor(5–7). The degree to which individual receptor genes contribute to odour perception is unclear. Here we show that genetic deletion of the olfactory TAAR gene family, or even a single TAAR gene, eliminates aversion that mice display to low concentrations of volatile amines and to the odour of predator urine. Our findings identify a role for the TAARs in olfaction, namely in the high-sensitivity detection of innately aversive odours. In addition, our data reveal that aversive amines are represented in a non-redundant fashion, and that individual main olfactory receptor genes can contribute significantly to odour perception. |
---|