Cargando…

Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants

Plant seeds naturally accumulate storage reserves (proteins, carbohydrates, lipids) that are mobilized during germination to provide energy and raw materials to support early seedling growth. Seeds have been exploited as bioreactors for the production to foreign materials, but stable, high level exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yimei, Pajak, Agnieszka, Marsolais, Frédéric, McCourt, Peter, Riggs, C. Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664629/
https://www.ncbi.nlm.nih.gov/pubmed/23724110
http://dx.doi.org/10.1371/journal.pone.0064980
_version_ 1782271136273268736
author Lin, Yimei
Pajak, Agnieszka
Marsolais, Frédéric
McCourt, Peter
Riggs, C. Daniel
author_facet Lin, Yimei
Pajak, Agnieszka
Marsolais, Frédéric
McCourt, Peter
Riggs, C. Daniel
author_sort Lin, Yimei
collection PubMed
description Plant seeds naturally accumulate storage reserves (proteins, carbohydrates, lipids) that are mobilized during germination to provide energy and raw materials to support early seedling growth. Seeds have been exploited as bioreactors for the production to foreign materials, but stable, high level expression has been elusive, in part due to the intrinsic bias for producing the natural reserves in their typical proportions. To identify mutants governing seed filling, we screened a population of mutagenized Arabidopsis plants for a mutant that failed to fill its seeds. Here we report the identification of ssp1, a recessive, viable mutant that accumulates approximately 15% less protein than wildtype seeds. Molecular analyses revealed that ssp1 is due to the introduction of a premature stop codon in CRU3, one of the major cruciferin genes. Unlike many other reserve mutants or transgenic lines in which seed storage protein levels are reduced by antisense/RNAi technologies, ssp1 exhibits low level compensation by other reserves, and represents a mutant background that might prove useful for high level expression of foreign proteins. To test this hypothesis, we used a bean phytohemagglutinin (PHA) gene as a reporter and compared PHA expression levels in single copy insertion lines in ssp1 vs. wildtype. These near isogenic lines allow reporter protein levels to be compared without the confounding and sometimes unknown influences of transgene copy number and position effects on gene expression. The ssp1 lines consistently accumulated more PHA than the backcrossed counterparts, with increases ranging from 12% to 126%. This proof of principle study suggests that similar strategies in crop plants may improve the yield of foreign proteins of agronomic and economic interest.
format Online
Article
Text
id pubmed-3664629
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36646292013-05-30 Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants Lin, Yimei Pajak, Agnieszka Marsolais, Frédéric McCourt, Peter Riggs, C. Daniel PLoS One Research Article Plant seeds naturally accumulate storage reserves (proteins, carbohydrates, lipids) that are mobilized during germination to provide energy and raw materials to support early seedling growth. Seeds have been exploited as bioreactors for the production to foreign materials, but stable, high level expression has been elusive, in part due to the intrinsic bias for producing the natural reserves in their typical proportions. To identify mutants governing seed filling, we screened a population of mutagenized Arabidopsis plants for a mutant that failed to fill its seeds. Here we report the identification of ssp1, a recessive, viable mutant that accumulates approximately 15% less protein than wildtype seeds. Molecular analyses revealed that ssp1 is due to the introduction of a premature stop codon in CRU3, one of the major cruciferin genes. Unlike many other reserve mutants or transgenic lines in which seed storage protein levels are reduced by antisense/RNAi technologies, ssp1 exhibits low level compensation by other reserves, and represents a mutant background that might prove useful for high level expression of foreign proteins. To test this hypothesis, we used a bean phytohemagglutinin (PHA) gene as a reporter and compared PHA expression levels in single copy insertion lines in ssp1 vs. wildtype. These near isogenic lines allow reporter protein levels to be compared without the confounding and sometimes unknown influences of transgene copy number and position effects on gene expression. The ssp1 lines consistently accumulated more PHA than the backcrossed counterparts, with increases ranging from 12% to 126%. This proof of principle study suggests that similar strategies in crop plants may improve the yield of foreign proteins of agronomic and economic interest. Public Library of Science 2013-05-27 /pmc/articles/PMC3664629/ /pubmed/23724110 http://dx.doi.org/10.1371/journal.pone.0064980 Text en © 2013 Lin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lin, Yimei
Pajak, Agnieszka
Marsolais, Frédéric
McCourt, Peter
Riggs, C. Daniel
Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title_full Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title_fullStr Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title_full_unstemmed Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title_short Characterization of a Cruciferin Deficient Mutant of Arabidopsis and Its Utility for Overexpression of Foreign Proteins in Plants
title_sort characterization of a cruciferin deficient mutant of arabidopsis and its utility for overexpression of foreign proteins in plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664629/
https://www.ncbi.nlm.nih.gov/pubmed/23724110
http://dx.doi.org/10.1371/journal.pone.0064980
work_keys_str_mv AT linyimei characterizationofacruciferindeficientmutantofarabidopsisanditsutilityforoverexpressionofforeignproteinsinplants
AT pajakagnieszka characterizationofacruciferindeficientmutantofarabidopsisanditsutilityforoverexpressionofforeignproteinsinplants
AT marsolaisfrederic characterizationofacruciferindeficientmutantofarabidopsisanditsutilityforoverexpressionofforeignproteinsinplants
AT mccourtpeter characterizationofacruciferindeficientmutantofarabidopsisanditsutilityforoverexpressionofforeignproteinsinplants
AT riggscdaniel characterizationofacruciferindeficientmutantofarabidopsisanditsutilityforoverexpressionofforeignproteinsinplants