Cargando…

miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts

Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Pellegrino, Loredana, Stebbing, Justin, Braga, Vania M., Frampton, Adam E., Jacob, Jimmy, Buluwela, Lakjaya, Jiao, Long R., Periyasamy, Manikandan, Madsen, Chris D., Caley, Matthew P., Ottaviani, Silvia, Roca-Alonso, Laura, El-Bahrawy, Mona, Coombes, R. Charles, Krell, Jonathan, Castellano, Leandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664824/
https://www.ncbi.nlm.nih.gov/pubmed/23580553
http://dx.doi.org/10.1093/nar/gkt245
Descripción
Sumario:Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.