Cargando…
An Orthotopic Mouse Model of Anaplastic Thyroid Carcinoma
Several types of animal models of human thyroid carcinomas have been established, including subcutaneous xenograft and orthotopic implantation of cancer cells into immunodeficient mice. Subcutaneous xenograft models have been valuable for preclinical screening and evaluation of new therapeutic treat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664970/ https://www.ncbi.nlm.nih.gov/pubmed/23628990 http://dx.doi.org/10.3791/50097 |
Sumario: | Several types of animal models of human thyroid carcinomas have been established, including subcutaneous xenograft and orthotopic implantation of cancer cells into immunodeficient mice. Subcutaneous xenograft models have been valuable for preclinical screening and evaluation of new therapeutic treatments. There are a number of advantages to using a subcutaneous model; 1) rapid, 2) reproducible, and 3) tumor establishment, growth, and response to therapeutic agents may be monitored by visual inspection. However, substantial evidence has shed light on the short-comings of subcutaneous xenograft models(1-3). For instance, medicinal treatments demonstrating curative properties in subcutaneous xenograft models often have no notable impact on the human disease. The microenvironment of the site of xenographic transplantation or injection lies at the heart of this dissimilarity. Orthotopic tumor xenograft models provide a more biologically relevant context in which to study the disease. The advantages of implanting diseased cells or tissue into their anatomical origin equivalent within a host animal includes a suitable site for tumor-host interactions, development of disease-related metastases and the ability to examine site-specific influence on investigational therapeutic remedies. Therefore, orthotopic xenograft models harbor far more clinical value because they closely reproduce human disease. For these reasons, a number of groups have taken advantage of an orthotopic thyroid cancer model as a research tool(4-7). Here, we describe an approach that establishes an orthotopic model for the study of anaplastic thyroid carcinoma (ATC), which is highly invasive, resists treatment, and is virtually fatal in all diagnosed patients. Cultured ATC cells are prepared as a dissociated cellular suspension in a solution containing a basement membrane matrix. A small volume is slowly injected into the right thyroid gland. Overall appearance and health of the mice are monitored to ensure minimal post-operative complications and to gauge pathological penetrance of the cancer. Mice are sacrificed at 4 weeks, and tissue is collected for histological analysis. Animals may be taken at later time-points to examine more advance progression of the disease. Production of this orthotopic mouse model establishes a platform that accomplishes two objectives: 1) further our understanding of ATC pathology, and 2) screen current and future therapeutic agents for efficacy in combating ATC. |
---|