Cargando…
Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation
We recently reported that cranial bones of Fgfr2(C342Y/+) craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the id...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665166/ https://www.ncbi.nlm.nih.gov/pubmed/23762837 http://dx.doi.org/10.1155/2013/292506 |
_version_ | 1782271220183465984 |
---|---|
author | Liu, J. Kwon, T.-G. Nam, H. K. Hatch, N. E. |
author_facet | Liu, J. Kwon, T.-G. Nam, H. K. Hatch, N. E. |
author_sort | Liu, J. |
collection | PubMed |
description | We recently reported that cranial bones of Fgfr2(C342Y/+) craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the idea that craniosynostosis-associated Fgfr mutations lead to cell autonomous defects in osteoblast differentiation and mineralized tissue formation, here we tested bone marrow stromal cells isolated from Fgfr2(C342Y/+) mice for their ability to differentiate into osteoblasts. Additionally, to determine if the low bone mass phenotype of Crouzon syndrome includes the appendicular skeleton, long bones were assessed by micro CT. Fgfr2(C342Y/+) cells showed increased osteoblastic gene expression during early osteoblastic differentiation but decreased expression of alkaline phosphatase mRNA and enzyme activity, and decreased mineralization during later stages of differentiation, when cultured under 2D in vitro conditions. Cells isolated from Fgfr2(C342Y/+) mice also formed less bone when allowed to differentiate in a 3D matrix in vivo. Cortical bone parameters were diminished in long bones of Fgfr2(C342Y/+) mice. These results demonstrate that marrow stromal cells of Fgfr2(C342Y/+) mice have an autonomous defect in osteoblast differentiation and bone mineralization, and that the Fgfr2(C342Y) mutation influences both the axial and appendicular skeletons. |
format | Online Article Text |
id | pubmed-3665166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-36651662013-06-12 Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation Liu, J. Kwon, T.-G. Nam, H. K. Hatch, N. E. Biomed Res Int Research Article We recently reported that cranial bones of Fgfr2(C342Y/+) craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the idea that craniosynostosis-associated Fgfr mutations lead to cell autonomous defects in osteoblast differentiation and mineralized tissue formation, here we tested bone marrow stromal cells isolated from Fgfr2(C342Y/+) mice for their ability to differentiate into osteoblasts. Additionally, to determine if the low bone mass phenotype of Crouzon syndrome includes the appendicular skeleton, long bones were assessed by micro CT. Fgfr2(C342Y/+) cells showed increased osteoblastic gene expression during early osteoblastic differentiation but decreased expression of alkaline phosphatase mRNA and enzyme activity, and decreased mineralization during later stages of differentiation, when cultured under 2D in vitro conditions. Cells isolated from Fgfr2(C342Y/+) mice also formed less bone when allowed to differentiate in a 3D matrix in vivo. Cortical bone parameters were diminished in long bones of Fgfr2(C342Y/+) mice. These results demonstrate that marrow stromal cells of Fgfr2(C342Y/+) mice have an autonomous defect in osteoblast differentiation and bone mineralization, and that the Fgfr2(C342Y) mutation influences both the axial and appendicular skeletons. Hindawi Publishing Corporation 2013 2013-05-09 /pmc/articles/PMC3665166/ /pubmed/23762837 http://dx.doi.org/10.1155/2013/292506 Text en Copyright © 2013 J. Liu et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, J. Kwon, T.-G. Nam, H. K. Hatch, N. E. Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title | Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title_full | Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title_fullStr | Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title_full_unstemmed | Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title_short | Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation |
title_sort | craniosynostosis-associated fgfr2(c342y) mutant bone marrow stromal cells exhibit cell autonomous abnormalities in osteoblast differentiation and bone formation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665166/ https://www.ncbi.nlm.nih.gov/pubmed/23762837 http://dx.doi.org/10.1155/2013/292506 |
work_keys_str_mv | AT liuj craniosynostosisassociatedfgfr2c342ymutantbonemarrowstromalcellsexhibitcellautonomousabnormalitiesinosteoblastdifferentiationandboneformation AT kwontg craniosynostosisassociatedfgfr2c342ymutantbonemarrowstromalcellsexhibitcellautonomousabnormalitiesinosteoblastdifferentiationandboneformation AT namhk craniosynostosisassociatedfgfr2c342ymutantbonemarrowstromalcellsexhibitcellautonomousabnormalitiesinosteoblastdifferentiationandboneformation AT hatchne craniosynostosisassociatedfgfr2c342ymutantbonemarrowstromalcellsexhibitcellautonomousabnormalitiesinosteoblastdifferentiationandboneformation |