Cargando…
Assessment of computational methods for predicting the effects of missense mutations in human cancers
BACKGROUND: Recent advances in sequencing technologies have greatly increased the identification of mutations in cancer genomes. However, it remains a significant challenge to identify cancer-driving mutations, since most observed missense changes are neutral passenger mutations. Various computation...
Autores principales: | Gnad, Florian, Baucom, Albion, Mukhyala, Kiran, Manning, Gerard, Zhang, Zemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665581/ https://www.ncbi.nlm.nih.gov/pubmed/23819521 http://dx.doi.org/10.1186/1471-2164-14-S3-S7 |
Ejemplares similares
-
Bi-Directional SIFT Predicts a Subset of Activating Mutations
por: Lee, William, et al.
Publicado: (2009) -
CanPredict: a computational tool for predicting cancer-associated missense mutations
por: Kaminker, Joshua S., et al.
Publicado: (2007) -
Bioinformatics analysis of thousands of TCGA tumors to determine the involvement of epigenetic regulators in human cancer
por: Gnad, Florian, et al.
Publicado: (2015) -
Interpreting missense mutations in Human TRIM5alpha by computational methods
por: Chan, Philip A
Publicado: (2008) -
A method and server for predicting damaging missense mutations
por: Adzhubei, Ivan A., et al.
Publicado: (2010)