Cargando…
Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow
Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites’ development, the parasites expor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665641/ https://www.ncbi.nlm.nih.gov/pubmed/23724092 http://dx.doi.org/10.1371/journal.pone.0064763 |
_version_ | 1782271284353171456 |
---|---|
author | Xu, Xiaofeng Efremov, Artem K. Li, Ang Lai, Lipeng Dao, Ming Lim, Chwee Teck Cao, Jianshu |
author_facet | Xu, Xiaofeng Efremov, Artem K. Li, Ang Lai, Lipeng Dao, Ming Lim, Chwee Teck Cao, Jianshu |
author_sort | Xu, Xiaofeng |
collection | PubMed |
description | Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites’ development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC’s adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size. |
format | Online Article Text |
id | pubmed-3665641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36656412013-05-30 Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow Xu, Xiaofeng Efremov, Artem K. Li, Ang Lai, Lipeng Dao, Ming Lim, Chwee Teck Cao, Jianshu PLoS One Research Article Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites’ development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC’s adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size. Public Library of Science 2013-05-28 /pmc/articles/PMC3665641/ /pubmed/23724092 http://dx.doi.org/10.1371/journal.pone.0064763 Text en © 2013 Xu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Xu, Xiaofeng Efremov, Artem K. Li, Ang Lai, Lipeng Dao, Ming Lim, Chwee Teck Cao, Jianshu Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title | Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title_full | Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title_fullStr | Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title_full_unstemmed | Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title_short | Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow |
title_sort | probing the cytoadherence of malaria infected red blood cells under flow |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665641/ https://www.ncbi.nlm.nih.gov/pubmed/23724092 http://dx.doi.org/10.1371/journal.pone.0064763 |
work_keys_str_mv | AT xuxiaofeng probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT efremovartemk probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT liang probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT lailipeng probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT daoming probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT limchweeteck probingthecytoadherenceofmalariainfectedredbloodcellsunderflow AT caojianshu probingthecytoadherenceofmalariainfectedredbloodcellsunderflow |