Cargando…

(19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

BACKGROUND: The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies...

Descripción completa

Detalles Bibliográficos
Autores principales: Hertlein, Tobias, Sturm, Volker, Jakob, Peter, Ohlsen, Knut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665837/
https://www.ncbi.nlm.nih.gov/pubmed/23724049
http://dx.doi.org/10.1371/journal.pone.0064440
_version_ 1782271313582227456
author Hertlein, Tobias
Sturm, Volker
Jakob, Peter
Ohlsen, Knut
author_facet Hertlein, Tobias
Sturm, Volker
Jakob, Peter
Ohlsen, Knut
author_sort Hertlein, Tobias
collection PubMed
description BACKGROUND: The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of (19)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. METHODS/PRINCIPAL FINDINGS: Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of (19)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the (19)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. CONCLUSIONS: (19)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection.
format Online
Article
Text
id pubmed-3665837
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36658372013-05-30 (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model Hertlein, Tobias Sturm, Volker Jakob, Peter Ohlsen, Knut PLoS One Research Article BACKGROUND: The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of (19)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. METHODS/PRINCIPAL FINDINGS: Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of (19)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the (19)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. CONCLUSIONS: (19)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. Public Library of Science 2013-05-28 /pmc/articles/PMC3665837/ /pubmed/23724049 http://dx.doi.org/10.1371/journal.pone.0064440 Text en © 2013 Hertlein et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hertlein, Tobias
Sturm, Volker
Jakob, Peter
Ohlsen, Knut
(19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title_full (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title_fullStr (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title_full_unstemmed (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title_short (19)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model
title_sort (19)f magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a staphylococcus aureus infection model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665837/
https://www.ncbi.nlm.nih.gov/pubmed/23724049
http://dx.doi.org/10.1371/journal.pone.0064440
work_keys_str_mv AT hertleintobias 19fmagneticresonanceimagingofperfluorocarbonsfortheevaluationofresponsetoantibiotictherapyinastaphylococcusaureusinfectionmodel
AT sturmvolker 19fmagneticresonanceimagingofperfluorocarbonsfortheevaluationofresponsetoantibiotictherapyinastaphylococcusaureusinfectionmodel
AT jakobpeter 19fmagneticresonanceimagingofperfluorocarbonsfortheevaluationofresponsetoantibiotictherapyinastaphylococcusaureusinfectionmodel
AT ohlsenknut 19fmagneticresonanceimagingofperfluorocarbonsfortheevaluationofresponsetoantibiotictherapyinastaphylococcusaureusinfectionmodel