Cargando…

Degraded stimulus visibility and the effects of perceptual load on distractor interference

In this study we examined whether effects of perceptual load on the attentional selectivity are modulated by degradation of the visual input. According to the perceptual load theory, increasing task difficulty via degradation of stimulus visibility should not alter the typical effect of perceptual l...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeshurun, Yaffa, Marciano, Hadas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665929/
https://www.ncbi.nlm.nih.gov/pubmed/23755029
http://dx.doi.org/10.3389/fpsyg.2013.00289
Descripción
Sumario:In this study we examined whether effects of perceptual load on the attentional selectivity are modulated by degradation of the visual input. According to the perceptual load theory, increasing task difficulty via degradation of stimulus visibility should not alter the typical effect of perceptual load. In previous studies only the target was degraded, resulting in increased distractor saliency. Here we combined manipulation of perceptual load with a more systematic degradation of visual information. Experiment 1 included five conditions. Three conditions involved low perceptual load + contrast reduction of: (A) only the target; (B) only the distractor; (C) both target and distractor. The other two conditions included non-degraded stimuli with low or high perceptual load. In Experiment 2 visibility degradation was established via manipulation of exposure duration. It included two exposure durations—100 and 150 ms—for each load level (low vs. high). The results of both experiments demonstrated reliable distractor interference of a similar magnitude with both degraded and non-degraded stimuli. This finding suggests that task difficulty, when manipulated via degradation of stimulus visibility, does not play a critical role in determining the efficiency of the attentional selectivity. However, contrary to the predictions of the perceptual load theory, in both experiments distractor interference emerged under the high load condition. In Experiment 2 the high-load interference was of the same magnitude as that of the low load condition. This high-load interference is not due to the presence of a mask (Experiment 3) or a mixed design (Experiment 4). These findings suggest that perceptual load may also play a lesser role in attentional selectivity than that assigned to it by the perceptual load theory.