Cargando…
Selective Segmentation for Global Optimization of Depth Estimation in Complex Scenes
This paper proposes a segmentation-based global optimization method for depth estimation. Firstly, for obtaining accurate matching cost, the original local stereo matching approach based on self-adapting matching window is integrated with two matching cost optimization strategies aiming at handling...
Autores principales: | Liu, Sheng, Jin, Haiqiang, Mao, Xiaojun, Zhai, Binbin, Zhan, Ye, Feng, Xiaofei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666278/ https://www.ncbi.nlm.nih.gov/pubmed/23766717 http://dx.doi.org/10.1155/2013/868674 |
Ejemplares similares
-
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Radar-Camera Fusion Network for Depth Estimation in Structured Driving Scenes
por: Li, Shuguang, et al.
Publicado: (2023) -
Semantic Segmentation Leveraging Simultaneous Depth Estimation
por: Sun, Wenbo, et al.
Publicado: (2021) -
LANet: Stereo matching network based on linear-attention mechanism for depth estimation optimization in 3D reconstruction of inter-forest scene
por: Liu, Lina, et al.
Publicado: (2022) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023)