Cargando…

All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current

The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since th...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, K., Kaldewey, T., Ripszam, R., Wildmann, J. S., Bechtold, A., Bichler, M., Koblmüller, G., Abstreiter, G., Finley, J. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667486/
https://www.ncbi.nlm.nih.gov/pubmed/23719615
http://dx.doi.org/10.1038/srep01906
_version_ 1782271504997679104
author Müller, K.
Kaldewey, T.
Ripszam, R.
Wildmann, J. S.
Bechtold, A.
Bichler, M.
Koblmüller, G.
Abstreiter, G.
Finley, J. J.
author_facet Müller, K.
Kaldewey, T.
Ripszam, R.
Wildmann, J. S.
Bechtold, A.
Bichler, M.
Koblmüller, G.
Abstreiter, G.
Finley, J. J.
author_sort Müller, K.
collection PubMed
description The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2–5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2–10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.
format Online
Article
Text
id pubmed-3667486
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-36674862013-05-30 All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current Müller, K. Kaldewey, T. Ripszam, R. Wildmann, J. S. Bechtold, A. Bichler, M. Koblmüller, G. Abstreiter, G. Finley, J. J. Sci Rep Article The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2–5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2–10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity. Nature Publishing Group 2013-05-30 /pmc/articles/PMC3667486/ /pubmed/23719615 http://dx.doi.org/10.1038/srep01906 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Müller, K.
Kaldewey, T.
Ripszam, R.
Wildmann, J. S.
Bechtold, A.
Bichler, M.
Koblmüller, G.
Abstreiter, G.
Finley, J. J.
All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title_full All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title_fullStr All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title_full_unstemmed All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title_short All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
title_sort all optical quantum control of a spin-quantum state and ultrafast transduction into an electric current
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667486/
https://www.ncbi.nlm.nih.gov/pubmed/23719615
http://dx.doi.org/10.1038/srep01906
work_keys_str_mv AT mullerk allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT kaldeweyt allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT ripszamr allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT wildmannjs allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT bechtolda allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT bichlerm allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT koblmullerg allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT abstreiterg allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent
AT finleyjj allopticalquantumcontrolofaspinquantumstateandultrafasttransductionintoanelectriccurrent