Cargando…
Pharmacogenetic Study of Deferasirox, an Iron Chelating Agent
Transfusion-associated iron overload induces systemic toxicity. Deferasirox, a convenient long acting oral agent, has recently been introduced in clinical practice with a promising efficacy. But there are some patients who experience drug-related toxicities and cannot tolerate it. To investigate eff...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667856/ https://www.ncbi.nlm.nih.gov/pubmed/23737969 http://dx.doi.org/10.1371/journal.pone.0064114 |
Sumario: | Transfusion-associated iron overload induces systemic toxicity. Deferasirox, a convenient long acting oral agent, has recently been introduced in clinical practice with a promising efficacy. But there are some patients who experience drug-related toxicities and cannot tolerate it. To investigate effect of genetic variations on the toxicities and find optimal target population, we analyzed the genetic polymorphisms of UDP-glucuronosyltransferase 1A (UGT1A) subfamily, multi-drug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). A total of 20 functional genetic polymorphisms were analyzed in 98 patients who received deferasirox to reduce transfusion-induced iron overload. We retrospectively reviewed the medical records to find out the drug-related toxicities. Fifteen (15.3%) patients developed hepatotoxicity. Patients without wild-type allele carrying two MRP2 haplotypes containing −1774 del and/or −24T were at increased risk of developing hepatotoxicity compared to patients with the wild-type allele on multivariate analysis (OR = 7.17, 95% CI = 1.79–28.67, P = 0.005). Creatinine elevation was observed in 9 patients (9.2%). Body weight ≥40 kg and homozygosity for UGT1A1*6 were risk factors of creatinine elevation (OR = 8.48, 95% CI = 1.7–43.57, P = 0.010 and OR = 14.17, 95% CI = 1.34–150.35, P = 0.028). Our results indicate that functional genetic variants of enzymes to metabolize and transport deferasirox are associated with drug-related toxicities. Further studies are warranted to confirm the results as the pharmacogenetic biomarkers of deferasirox. |
---|