Cargando…

HPV genotype distribution according to severity of cervical neoplasia using the digene HPV genotyping LQ test

A new genotyping-based DNA assay (Digene LQ(®)) was developed recently. The primary aim was to assess the distribution of HPV types using this new assay in atypical squamous cells of undeterminate significance (ASCUS). The secondary aim was to correlate the HPV types with the severity of the disease...

Descripción completa

Detalles Bibliográficos
Autores principales: Halfon, Philippe, Lindemann, Maria Luisa Mateos, Raimondo, Audrey, Ravet, Sophie, Camus, Claire, Khiri, Hacène, Pénaranda, Guillaume, Sideri, Mario, Sandri, Maria Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668127/
https://www.ncbi.nlm.nih.gov/pubmed/23299934
http://dx.doi.org/10.1007/s00705-012-1584-4
Descripción
Sumario:A new genotyping-based DNA assay (Digene LQ(®)) was developed recently. The primary aim was to assess the distribution of HPV types using this new assay in atypical squamous cells of undeterminate significance (ASCUS). The secondary aim was to correlate the HPV types with the severity of the disease. The study population comprised 376 ASCUS women. The women were all Hybrid Capture II (HCII) positive and were admitted in three European referral gynecology clinics between 2007 and 2010. A colposcopy with histological examination was performed in all these patients. HPV 16 was typed in 40 % of patients, HPV 18 in 7 %, and HPV 31 in 17 %, and 18 % of patients had mixed genotypes. Patients aged over 30 more often had the HPV 16 genotype than patients aged under 30 (29 % vs. 11 %, chi-square test p < 0.001). The risk of cervical intra-epithelial neoplasia of grade 2 or more (CIN2 +) when HPV 18 positive is lower than the probability associated with HPV 16 or HPV 31: 28 % vs. 58 % and 52 %, respectively (chi-square test, p = 0.005 and p = 0.05, respectively). The Digene LQ(®), a new sequence-specific hybrid capture sample preparation, is fast and efficient and allows high-throughput genotyping of 18 HR HPV types by PCR compared to traditional non-sequence-specific sample preparation methods.