Cargando…

Haplotype analysis of sucrose synthase gene family in three Saccharum species

BACKGROUND: Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jisen, Arro, Jie, Chen, Youqiang, Ming, Ray
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668173/
https://www.ncbi.nlm.nih.gov/pubmed/23663250
http://dx.doi.org/10.1186/1471-2164-14-314
_version_ 1782271583385026560
author Zhang, Jisen
Arro, Jie
Chen, Youqiang
Ming, Ray
author_facet Zhang, Jisen
Arro, Jie
Chen, Youqiang
Ming, Ray
author_sort Zhang, Jisen
collection PubMed
description BACKGROUND: Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13) is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species. RESULTS: We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem, respectively. Phylogenetic analysis showed three separate clusters composed of SbSuSy1 and SbSuSy2, SbSuSy3 and SbSuSy5, and SbSuSy4. CONCLUSIONS: The five members of the SuSy gene family evolved before the divergence of the genera in the tribe Andropogoneae at least 12 MYA. Each ScSuSy gene showed at least one non-synonymous substitution in SNP haplotypes. The SNP frequency is the lowest in S. officinarum, intermediate in S. robustum, and the highest in S. spontaneum, which may reflect the timing of the two rounds of whole genome duplication in these octoploids. The higher rate of shared SNP frequency between S. officinarum and S. robustum than between S. officinarum and in S. spontaneum confirmed that the speciation event separating S. officinarum and S. robustum occurred after their common ancestor diverged from S. spontaneum. The SNP and haplotype frequencies in three Saccharum species provide fundamental information for designing strategies to sequence these autopolyploid genomes.
format Online
Article
Text
id pubmed-3668173
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36681732013-06-01 Haplotype analysis of sucrose synthase gene family in three Saccharum species Zhang, Jisen Arro, Jie Chen, Youqiang Ming, Ray BMC Genomics Research Article BACKGROUND: Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13) is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species. RESULTS: We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem, respectively. Phylogenetic analysis showed three separate clusters composed of SbSuSy1 and SbSuSy2, SbSuSy3 and SbSuSy5, and SbSuSy4. CONCLUSIONS: The five members of the SuSy gene family evolved before the divergence of the genera in the tribe Andropogoneae at least 12 MYA. Each ScSuSy gene showed at least one non-synonymous substitution in SNP haplotypes. The SNP frequency is the lowest in S. officinarum, intermediate in S. robustum, and the highest in S. spontaneum, which may reflect the timing of the two rounds of whole genome duplication in these octoploids. The higher rate of shared SNP frequency between S. officinarum and S. robustum than between S. officinarum and in S. spontaneum confirmed that the speciation event separating S. officinarum and S. robustum occurred after their common ancestor diverged from S. spontaneum. The SNP and haplotype frequencies in three Saccharum species provide fundamental information for designing strategies to sequence these autopolyploid genomes. BioMed Central 2013-05-10 /pmc/articles/PMC3668173/ /pubmed/23663250 http://dx.doi.org/10.1186/1471-2164-14-314 Text en Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zhang, Jisen
Arro, Jie
Chen, Youqiang
Ming, Ray
Haplotype analysis of sucrose synthase gene family in three Saccharum species
title Haplotype analysis of sucrose synthase gene family in three Saccharum species
title_full Haplotype analysis of sucrose synthase gene family in three Saccharum species
title_fullStr Haplotype analysis of sucrose synthase gene family in three Saccharum species
title_full_unstemmed Haplotype analysis of sucrose synthase gene family in three Saccharum species
title_short Haplotype analysis of sucrose synthase gene family in three Saccharum species
title_sort haplotype analysis of sucrose synthase gene family in three saccharum species
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668173/
https://www.ncbi.nlm.nih.gov/pubmed/23663250
http://dx.doi.org/10.1186/1471-2164-14-314
work_keys_str_mv AT zhangjisen haplotypeanalysisofsucrosesynthasegenefamilyinthreesaccharumspecies
AT arrojie haplotypeanalysisofsucrosesynthasegenefamilyinthreesaccharumspecies
AT chenyouqiang haplotypeanalysisofsucrosesynthasegenefamilyinthreesaccharumspecies
AT mingray haplotypeanalysisofsucrosesynthasegenefamilyinthreesaccharumspecies