Cargando…
A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection
BACKGROUND: Applying a statistical method implies identifying underlying (model) assumptions and checking their validity in the particular context. One of these contexts is association modeling for epistasis detection. Here, depending on the technique used, violation of model assumptions may result...
Autores principales: | Mahachie John, Jestinah M, Van Lishout, François, Gusareva, Elena S, Van Steen, Kristel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668290/ https://www.ncbi.nlm.nih.gov/pubmed/23618370 http://dx.doi.org/10.1186/1756-0381-6-9 |
Ejemplares similares
-
Performance of model-based multifactor dimensionality reduction methods for epistasis detection by controlling population structure
por: Abegaz, Fentaw, et al.
Publicado: (2021) -
Lower-Order Effects Adjustment in Quantitative Traits Model-Based Multifactor Dimensionality Reduction
por: Mahachie John, Jestinah M., et al.
Publicado: (2012) -
A roadmap to multifactor dimensionality reduction methods
por: Gola, Damian, et al.
Publicado: (2016) -
An efficient algorithm to perform multiple testing in epistasis screening
por: Lishout, François Van, et al.
Publicado: (2013) -
FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals
por: Cattaert, Tom, et al.
Publicado: (2010)