Cargando…
Crowdsourcing a Normative Natural Language Dataset: A Comparison of Amazon Mechanical Turk and In-Lab Data Collection
BACKGROUND: Crowdsourcing has become a valuable method for collecting medical research data. This approach, recruiting through open calls on the Web, is particularly useful for assembling large normative datasets. However, it is not known how natural language datasets collected over the Web differ f...
Autores principales: | Saunders, Daniel R, Bex, Peter J, Woods, Russell L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668615/ https://www.ncbi.nlm.nih.gov/pubmed/23689038 http://dx.doi.org/10.2196/jmir.2620 |
Ejemplares similares
-
Crowdsourcing Participatory Evaluation of Medical Pictograms Using Amazon Mechanical Turk
por: Yu, Bei, et al.
Publicado: (2013) -
Crowdsourcing Awareness: Exploration of the Ovarian Cancer Knowledge Gap through Amazon Mechanical Turk
por: Carter, Rebecca R., et al.
Publicado: (2014) -
Crowdsourcing for Food Purchase Receipt Annotation via Amazon Mechanical Turk: A Feasibility Study
por: Lu, Wenhua, et al.
Publicado: (2019) -
Crowdsourcing for Machine Learning in Public Health Surveillance: Lessons Learned From Amazon Mechanical Turk
por: Shakeri Hossein Abad, Zahra, et al.
Publicado: (2022) -
Collecting Psycholinguistic Response Time Data Using Amazon Mechanical Turk
por: Enochson, Kelly, et al.
Publicado: (2015)