Cargando…
Prediction of Drosophila melanogaster gene function using Support Vector Machines
BACKGROUND: While the genomes of hundreds of organisms have been sequenced and good approaches exist for finding protein encoding genes, an important remaining challenge is predicting the functions of the large fraction of genes for which there is no annotation. Large gene expression datasets from m...
Autores principales: | Mitsakakis, Nicholas, Razak, Zak, Escobar, Michael, Westwood, J Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669044/ https://www.ncbi.nlm.nih.gov/pubmed/23547736 http://dx.doi.org/10.1186/1756-0381-6-8 |
Ejemplares similares
-
Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster
por: Gonsalves, Sarah E., et al.
Publicado: (2011) -
Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features
por: Aromolaran, Olufemi, et al.
Publicado: (2020) -
Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes
por: Behura, Susanta K., et al.
Publicado: (2011) -
Single vector non-leaky gene expression system for Drosophila melanogaster
por: Akmammedov, Arslan, et al.
Publicado: (2017) -
A Genome-Wide Gene Function Prediction Resource for Drosophila melanogaster
por: Yan, Han, et al.
Publicado: (2010)