Cargando…
DDX5 Facilitates HIV-1 Replication as a Cellular Co-Factor of Rev
HIV-1 Rev plays an important role in the late phase of HIV-1 replication, which facilitates export of unspliced viral mRNAs from the nucleus to cytoplasm in infected cells. Recent studies have shown that DDX1 and DDX3 are co-factors of Rev for the export of HIV-1 transcripts. In this report, we have...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669200/ https://www.ncbi.nlm.nih.gov/pubmed/23741449 http://dx.doi.org/10.1371/journal.pone.0065040 |
Sumario: | HIV-1 Rev plays an important role in the late phase of HIV-1 replication, which facilitates export of unspliced viral mRNAs from the nucleus to cytoplasm in infected cells. Recent studies have shown that DDX1 and DDX3 are co-factors of Rev for the export of HIV-1 transcripts. In this report, we have demonstrated that DDX5 (p68), which is a multifunctional DEAD-box RNA helicase, functions as a new cellular co-factor of HIV-1 Rev. We found that DDX5 affects Rev function through the Rev-RRE axis and subsequently enhances HIV-1 replication. Confocal microscopy and co-immunoprecipitation analysis indicated that DDX5 binds to Rev and this interaction is largely dependent on RNA. If the DEAD-box motif of DDX5 is mutated, DDX5 loses almost all of its ability to bind to Rev, indicating that the DEAD-box motif of DDX5 is required for the interaction between DDX5 and Rev. Our data indicate that interference of DDX5-Rev interaction could reduce HIV-1 replication and potentially provide a new molecular target for anti-HIV-1 therapeutics. |
---|