Cargando…
The Development of a Universal In Silico Predictor of Protein-Protein Interactions
Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the dev...
Autores principales: | Valente, Guilherme T., Acencio, Marcio L., Martins, Cesar, Lemke, Ney |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669264/ https://www.ncbi.nlm.nih.gov/pubmed/23741499 http://dx.doi.org/10.1371/journal.pone.0065587 |
Ejemplares similares
-
Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review
por: Kandoi, Gaurav, et al.
Publicado: (2015) -
The development of an open-access database for human transcriptional regulation interactions
por: Bovolenta, Luiz Augusto, et al.
Publicado: (2011) -
Corrigendum: Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
por: Zhang, Xue, et al.
Publicado: (2016) -
HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions
por: Bovolenta, Luiz A, et al.
Publicado: (2012)