Cargando…

Role of the Carbohydrate-Binding Sites of Griffithsin in the Prevention of DC-SIGN-Mediated Capture and Transmission of HIV-1

BACKGROUND: The glycan-targeting C-type DC-SIGN lectin receptor is implicated in the transmission of the human immunodeficiency virus (HIV) by binding the virus and transferring the captured HIV-1 to CD4(+) T lymphocytes. Carbohydrate binding agents (CBAs) have been reported to block HIV-1 infection...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoorelbeke, Bart, Xue, Jie, LiWang, Patricia J., Balzarini, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669349/
https://www.ncbi.nlm.nih.gov/pubmed/23741304
http://dx.doi.org/10.1371/journal.pone.0064132
Descripción
Sumario:BACKGROUND: The glycan-targeting C-type DC-SIGN lectin receptor is implicated in the transmission of the human immunodeficiency virus (HIV) by binding the virus and transferring the captured HIV-1 to CD4(+) T lymphocytes. Carbohydrate binding agents (CBAs) have been reported to block HIV-1 infection. We have now investigated the potent mannose-specific anti-HIV CBA griffithsin (GRFT) on its ability to inhibit the capture of HIV-1 to DC-SIGN, its DC-SIGN-directed transmission to CD4(+) T-lymphocytes and the role of the three carbohydrate-binding sites (CBS) of GRFT in these processes. FINDINGS: GRFT inhibited HIV-1(III(B)) infection of CEM and HIV-1(NL4.3) infection of C8166 CD4(+) T-lymphocytes at an EC(50) of 0.059 and 0.444 nM, respectively. The single mutant CBS variants of GRFT (in which a key Asp in one of the CBS was mutated to Ala) were about ∼20 to 60-fold less potent to prevent HIV-1 infection and ∼20 to 90-fold less potent to inhibit syncytia formation in co-cultures of persistently HIV-1 infected HuT-78 and uninfected C8166 CD4(+) T-lymphocytes. GRFT prevents DC-SIGN-mediated virus capture and HIV-1 transmission to CD4(+) T-lymphocytes at an EC(50) of 1.5 nM and 0.012 nM, respectively. Surface plasmon resonance (SPR) studies revealed that wild-type GRFT efficiently blocked the binding between DC-SIGN and immobilized gp120, whereas the point mutant CBS variants of GRFT were ∼10- to 15-fold less efficient. SPR-analysis also demonstrated that wild-type GRFT and its single mutant CBS variants have the capacity to expel bound gp120 from the gp120-DC-SIGN complex in a dose dependent manner, a property that was not observed for HHA, another mannose-specific potent anti-HIV-1 CBA. CONCLUSION: GRFT is inhibitory against HIV gp120 binding to DC-SIGN, efficiently prevents DC-SIGN-mediated transfer of HIV-1 to CD4(+) T-lymphocytes and is able to expel gp120 from the gp120-DC-SIGN complex. Functionally intact CBS of GRFT are important for the optimal action of GRFT.