Cargando…
Zoledronic Acid Sensitizes Renal Cell Carcinoma Cells to Radiation by Downregulating STAT1
Zoledronic acid (ZOL), a third-generation bisphosphonate that strongly inhibits osteoclast activity, is widely used for the treatment of bone metastasis from a variety of malignancies, including renal cell carcinoma (RCC). We previously reported that zoledronic acid (ZOL) clinically potentiates anti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669422/ https://www.ncbi.nlm.nih.gov/pubmed/23741352 http://dx.doi.org/10.1371/journal.pone.0064615 |
Sumario: | Zoledronic acid (ZOL), a third-generation bisphosphonate that strongly inhibits osteoclast activity, is widely used for the treatment of bone metastasis from a variety of malignancies, including renal cell carcinoma (RCC). We previously reported that zoledronic acid (ZOL) clinically potentiates antitumor effects of radiotherapy (RT) on bone metastases from RCC. To date, however, it remains unknown whether ZOL radiosensitizes RCC and if it does, how. Here, we demonstrated that ZOL directly radiosensitizes RCC cells independent of osteoclast activity by potentiating the caspase-3-mediated apoptosis pathway. The radiosensitization by ZOL was observed in 786-O, A-498, and ACHN cells but not in Caki-1 cells. As its underlying molecular mechanism, we found that the signal transducer and activator of transcription 1 (STAT1) plays a key role. The three RCC cell lines, in which ZOL exerted a radiosensitizing effect, expressed STAT1 abundantly but Caki-1 cells did not. ZOL downregulated endogenous STAT1 expression in 786-O, A-498, and ACHN cells by a post-transcriptional modification. We confirmed that knockdown of endogenous STAT1 by siRNA sensitized 786-O cells to RT equivalently to ZOL, and that introduction of exogenous STAT1 rendered Caki-1 cells more RT-resistant. This is the first study to clarify the molecular mechanism by which ZOL directly radiosensitizes tumor cells. Because tumor cells commonly overexpress STAT1 and ZOL reportedly radiosensitizes various types of tumor cells, ZOL warrants further clinical and translational studies as a potent radiosensitizer against RT-resistant tumors overexpressing STAT1. |
---|