Cargando…
Chemo-informatic design of antibiotic geldenamycin analogs to target stress proteins HSP90 of pathogenic protozoan parasites
Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens suggesting that they are ancient and conserv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669783/ https://www.ncbi.nlm.nih.gov/pubmed/23750075 http://dx.doi.org/10.6026/97320630009329 |
Sumario: | Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens suggesting that they are ancient and conserved proteins. Here, using molecular modeling and docking protocols, antibiotic Geldenamycin and its analog are targeted to the HSP90 homolog proteins of pathogenic protozoans Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei and Entamoeba Histolytica. The designed analogs of geldenamycin have shown drug like property with improved binding affinity to their targets. A decrease in insilico affinity of the analogs for the Human HSP90 target indicates that they can be used as potential drug candidates. |
---|