Cargando…

Binding interactions of porphyrin derivatives with Ca(2+) ATPase of sarcoplasmic reticulum (SERCA1a)

The use of Porphyrin derivatives as photosensitizers in Photodynamic Therapy (PDT) was investigated by means of a molecular docking study. These molecules can bind to intracellular targets such as P-type CaCa(2+) ATPase of sarcoplasmic reticulum (SERCA1a). CAChe software was successfully employed fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hai, Abdul, Kizilbash, Nadeem A, Zaidi, Syeda Huma H, Alruwaili, Jamal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670123/
https://www.ncbi.nlm.nih.gov/pubmed/23750090
http://dx.doi.org/10.6026/97320630009409
Descripción
Sumario:The use of Porphyrin derivatives as photosensitizers in Photodynamic Therapy (PDT) was investigated by means of a molecular docking study. These molecules can bind to intracellular targets such as P-type CaCa(2+) ATPase of sarcoplasmic reticulum (SERCA1a). CAChe software was successfully employed for conducting the docking of Tetraphenylporphinesulfonate(TPPS), 5,10,15,20- Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) nitrosyl Chloride (FeNOTPPS) with CaCa(2+) ATPase from sarcoplasmic reticulum of rabbit. The results show that FeNOTPPS forms the most stable complex with CaCa(2+) ATPase.