Cargando…
On the morphogenesis of glial compartments in the sensory organs of Caenorhabditis elegans
Glial cells surround neuronal endings and isolate them within specialized compartments. This architecture is found at synapses in the central nervous system, as well as at receptive endings of sensory neurons. Recent studies are beginning to uncover the contributions of glial compartments to the fun...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670172/ https://www.ncbi.nlm.nih.gov/pubmed/24058823 http://dx.doi.org/10.4161/worm.19343 |
Sumario: | Glial cells surround neuronal endings and isolate them within specialized compartments. This architecture is found at synapses in the central nervous system, as well as at receptive endings of sensory neurons. Recent studies are beginning to uncover the contributions of glial compartments to the functions of the ensheathed neurons. However, the cellular and molecular processes that guide compartment morphogenesis remain unknown. The main sensory organ of Caenorhabditis elegans, the amphid, provides an experimentally tractable setting in which to address the mechanisms underlying glial compartment formation. Amphid development is stereotyped and amphid structure is easily assayed. We recently uncovered a molecular tug of war that regulates the size of the amphid sensory compartment. The Nemo-like kinase LIT-1 interacts with the glial cytoskeleton to promote compartment growth, a process that also involves components of the retromer complex, while the Patched-related transmembrane protein DAF-6 keeps this expansion in check. Here we discuss how regulation of secretion by the cytoskeleton could guide the sculpting of glial compartments. |
---|