Cargando…
Planar polarity genes and inhibition of supernumerary neurites
Planar cell polarity (PCP) genes have recently emerged as important players in sculpting neuronal connections. The bipolar VC neurons display stereotypical differences in axon extension along the anterior-posterior (AP) body axis: VC1–3 and VC6 polarize along the AP axis while VC4 and VC5 polarize a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670227/ https://www.ncbi.nlm.nih.gov/pubmed/24058835 http://dx.doi.org/10.4161/worm.19537 |
Sumario: | Planar cell polarity (PCP) genes have recently emerged as important players in sculpting neuronal connections. The bipolar VC neurons display stereotypical differences in axon extension along the anterior-posterior (AP) body axis: VC1–3 and VC6 polarize along the AP axis while VC4 and VC5 polarize along the orthogonal left-right (LR) axis generated by the developing vulva. vang-1 and prkl-1, the worm orthologs of Van Gogh and Prickle, are required to restrict the polarity of neurite emergence to a specific tissue axis. vang-1 and prkl-1 loss results in ectopic VC4 and VC5 neurites extending inappropriately along the AP axis. Conversely, prkl-1 overexpression in VC neurons suppresses neurite formation. These findings suggest that a PCP-like pathway acts to silence or antagonize neuronal responses to polarity cues that would otherwise be permissive for neurite growth. |
---|