Cargando…

Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia

Microtubules (MTs) are post-translationally modified, but the functions of post-translational modifications (PTMs) have in many cases remained unknown. Most PTMs, such as polyglutamylation, occur on the protruding C-terminal tail (CTT) of tubulins, are reversible, and have been proposed to play a ro...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Hagan, Robert, Barr, Maureen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670407/
https://www.ncbi.nlm.nih.gov/pubmed/24058841
http://dx.doi.org/10.4161/worm.19539
Descripción
Sumario:Microtubules (MTs) are post-translationally modified, but the functions of post-translational modifications (PTMs) have in many cases remained unknown. Most PTMs, such as polyglutamylation, occur on the protruding C-terminal tail (CTT) of tubulins, are reversible, and have been proposed to play a role in regulation of MT-associated proteins (MAPs), molecular motors, and MT-severing proteins. Several PTM enzymes have been identified, including a carboxypeptidase in mice known as CCP1, which reduces polyglutamylation on the CTT of MTs, and causes cell-specific neurodegeneration when mutated.