Cargando…
αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway
αν and β1 integrins mediate Aβ–induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670848/ https://www.ncbi.nlm.nih.gov/pubmed/23755149 http://dx.doi.org/10.1371/journal.pone.0064839 |
_version_ | 1782271892748500992 |
---|---|
author | Han, Hai-Yan Zhang, Jin-Ping Ji, Su-Qiong Liang, Qi-Ming Kang, Hui-Cong Tang, Rong-Hua Zhu, Sui-Qiang Xue, Zheng |
author_facet | Han, Hai-Yan Zhang, Jin-Ping Ji, Su-Qiong Liang, Qi-Ming Kang, Hui-Cong Tang, Rong-Hua Zhu, Sui-Qiang Xue, Zheng |
author_sort | Han, Hai-Yan |
collection | PubMed |
description | αν and β1 integrins mediate Aβ–induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway. |
format | Online Article Text |
id | pubmed-3670848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36708482013-06-10 αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway Han, Hai-Yan Zhang, Jin-Ping Ji, Su-Qiong Liang, Qi-Ming Kang, Hui-Cong Tang, Rong-Hua Zhu, Sui-Qiang Xue, Zheng PLoS One Research Article αν and β1 integrins mediate Aβ–induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway. Public Library of Science 2013-06-03 /pmc/articles/PMC3670848/ /pubmed/23755149 http://dx.doi.org/10.1371/journal.pone.0064839 Text en © 2013 Han et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Han, Hai-Yan Zhang, Jin-Ping Ji, Su-Qiong Liang, Qi-Ming Kang, Hui-Cong Tang, Rong-Hua Zhu, Sui-Qiang Xue, Zheng αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title | αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title_full | αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title_fullStr | αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title_full_unstemmed | αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title_short | αν and β1 Integrins Mediate Aβ-Induced Neurotoxicity in Hippocampal Neurons via the FAK Signaling Pathway |
title_sort | αν and β1 integrins mediate aβ-induced neurotoxicity in hippocampal neurons via the fak signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670848/ https://www.ncbi.nlm.nih.gov/pubmed/23755149 http://dx.doi.org/10.1371/journal.pone.0064839 |
work_keys_str_mv | AT hanhaiyan anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT zhangjinping anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT jisuqiong anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT liangqiming anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT kanghuicong anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT tangronghua anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT zhusuiqiang anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway AT xuezheng anandb1integrinsmediateabinducedneurotoxicityinhippocampalneuronsviathefaksignalingpathway |