Cargando…

Cupric Ions Induce the Oxidation and Trigger the Aggregation of Human Superoxide Dismutase 1

BACKGROUND: Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neuron...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Cheng, Xu, Wen-Chang, Xie, Zhen-Sheng, Pan, Kai, Hu, Jiao, Chen, Jie, Pang, Dai-Wen, Yang, Fu-Quan, Liang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670862/
https://www.ncbi.nlm.nih.gov/pubmed/23755211
http://dx.doi.org/10.1371/journal.pone.0065287
Descripción
Sumario:BACKGROUND: Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn(2)-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu(2+) or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu(2+): a moderate-affinity site (10(6) M(-1)) and a high-affinity site (10(8) M(-1)). Furthermore, Cu(2+) binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form. CONCLUSIONS/SIGNIFICANCE: We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu(2+) plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.