Cargando…
Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test
Parasitoid wasps are convenient subjects for testing sex allocation theory. However, their intricate life histories are often insufficiently captured in simple analytical models. In the polyembryonic wasp Copidosoma koehleri, a clone of genetically identical offspring develops from each egg. Male cl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670893/ https://www.ncbi.nlm.nih.gov/pubmed/23755142 http://dx.doi.org/10.1371/journal.pone.0064780 |
_version_ | 1782271903066488832 |
---|---|
author | Bügler, Max Rempoulakis, Polychronis Shacham, Roei Keasar, Tamar Thuijsman, Frank |
author_facet | Bügler, Max Rempoulakis, Polychronis Shacham, Roei Keasar, Tamar Thuijsman, Frank |
author_sort | Bügler, Max |
collection | PubMed |
description | Parasitoid wasps are convenient subjects for testing sex allocation theory. However, their intricate life histories are often insufficiently captured in simple analytical models. In the polyembryonic wasp Copidosoma koehleri, a clone of genetically identical offspring develops from each egg. Male clones contain fewer individuals than female clones. Some female larvae develop into soldiers that kill within-host competitors, while males do not form soldiers. These features complicate the prediction of Copidosoma’s sex allocation. We developed an individual-based simulation model, where numerous random starting strategies compete and recombine until a single stable sex allocation evolves. Life-history parameter values (e.g., fecundity, clone-sizes, larval survival) are estimated from experimental data. The model predicts a male-biased sex allocation, which becomes more extreme as the probability of superparasitism (hosts parasitized more than once) increases. To test this prediction, we reared adult parasitoids at either low or high density, mated them, and presented them with unlimited hosts. As predicted, wasps produced more sons than daughters in all treatments. Males reared at high density (a potential cue for superparasitism) produced a higher male bias in their offspring than low-density males. Unexpectedly, female density did not affect offspring sex ratios. We discuss possible mechanisms for paternal control over offspring sex. |
format | Online Article Text |
id | pubmed-3670893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36708932013-06-10 Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test Bügler, Max Rempoulakis, Polychronis Shacham, Roei Keasar, Tamar Thuijsman, Frank PLoS One Research Article Parasitoid wasps are convenient subjects for testing sex allocation theory. However, their intricate life histories are often insufficiently captured in simple analytical models. In the polyembryonic wasp Copidosoma koehleri, a clone of genetically identical offspring develops from each egg. Male clones contain fewer individuals than female clones. Some female larvae develop into soldiers that kill within-host competitors, while males do not form soldiers. These features complicate the prediction of Copidosoma’s sex allocation. We developed an individual-based simulation model, where numerous random starting strategies compete and recombine until a single stable sex allocation evolves. Life-history parameter values (e.g., fecundity, clone-sizes, larval survival) are estimated from experimental data. The model predicts a male-biased sex allocation, which becomes more extreme as the probability of superparasitism (hosts parasitized more than once) increases. To test this prediction, we reared adult parasitoids at either low or high density, mated them, and presented them with unlimited hosts. As predicted, wasps produced more sons than daughters in all treatments. Males reared at high density (a potential cue for superparasitism) produced a higher male bias in their offspring than low-density males. Unexpectedly, female density did not affect offspring sex ratios. We discuss possible mechanisms for paternal control over offspring sex. Public Library of Science 2013-06-03 /pmc/articles/PMC3670893/ /pubmed/23755142 http://dx.doi.org/10.1371/journal.pone.0064780 Text en © 2013 Bügler et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bügler, Max Rempoulakis, Polychronis Shacham, Roei Keasar, Tamar Thuijsman, Frank Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title | Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title_full | Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title_fullStr | Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title_full_unstemmed | Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title_short | Sex Allocation in a Polyembryonic Parasitoid with Female Soldiers: An Evolutionary Simulation and an Experimental Test |
title_sort | sex allocation in a polyembryonic parasitoid with female soldiers: an evolutionary simulation and an experimental test |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670893/ https://www.ncbi.nlm.nih.gov/pubmed/23755142 http://dx.doi.org/10.1371/journal.pone.0064780 |
work_keys_str_mv | AT buglermax sexallocationinapolyembryonicparasitoidwithfemalesoldiersanevolutionarysimulationandanexperimentaltest AT rempoulakispolychronis sexallocationinapolyembryonicparasitoidwithfemalesoldiersanevolutionarysimulationandanexperimentaltest AT shachamroei sexallocationinapolyembryonicparasitoidwithfemalesoldiersanevolutionarysimulationandanexperimentaltest AT keasartamar sexallocationinapolyembryonicparasitoidwithfemalesoldiersanevolutionarysimulationandanexperimentaltest AT thuijsmanfrank sexallocationinapolyembryonicparasitoidwithfemalesoldiersanevolutionarysimulationandanexperimentaltest |