Cargando…

cGMP-Dependent Protein Kinase Iβ Interacts with p44/WDR77 to Regulate Androgen Receptor-Driven Gene Expression

The androgen receptor (AR) pathway plays critical roles in controlling differentiation and proliferation of prostate epithelial cells. We previously identified a novel AR cofactor, p44/WDR77, which specifically enhances AR transcriptional activity in the prostate gland and prostate cancer. To furthe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Liran, Hosohata, Keiko, Gao, Shen, Gu, Zhongping, Wang, Zhengxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670919/
https://www.ncbi.nlm.nih.gov/pubmed/23755100
http://dx.doi.org/10.1371/journal.pone.0063119
Descripción
Sumario:The androgen receptor (AR) pathway plays critical roles in controlling differentiation and proliferation of prostate epithelial cells. We previously identified a novel AR cofactor, p44/WDR77, which specifically enhances AR transcriptional activity in the prostate gland and prostate cancer. To further elucidate p44/WDR77's role in the AR signaling pathway, we conducted a yeast two-hybrid screening and identified cGMP-dependent protein kinase (PKG) as a p44/WDR77-interacting protein. Further investigation by lusiferase assay and kinase assay demonstrated that PKG-Iβ physically interacted with and phosphorylated both p44 and AR and enhanced AR transactivity in synergy with p44 in an androgen- and cGMP-dependent manner. Furthermore, PKG1β expression promoted p44/WDR77 nuclear translocation and inhibited prostate cancer cell growth via G1 cell cycle arrest. Our findings characterize PKG as a novel regulator of AR-mediated transcription by enhancing AR cofactor p44/WDR77's function, which provide a novel mechanism for the growth regulation of prostate cancer cells by the androgen signaling.