Cargando…
Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles
Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670927/ https://www.ncbi.nlm.nih.gov/pubmed/23755179 http://dx.doi.org/10.1371/journal.pone.0065118 |
_version_ | 1782271910874185728 |
---|---|
author | Sharma, Naveen Sequea, Donel A. Castorena, Carlos M. Arias, Edward B. Qi, Nathan R. Cartee, Gregory D. |
author_facet | Sharma, Naveen Sequea, Donel A. Castorena, Carlos M. Arias, Edward B. Qi, Nathan R. Cartee, Gregory D. |
author_sort | Sharma, Naveen |
collection | PubMed |
description | Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo. |
format | Online Article Text |
id | pubmed-3670927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36709272013-06-10 Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles Sharma, Naveen Sequea, Donel A. Castorena, Carlos M. Arias, Edward B. Qi, Nathan R. Cartee, Gregory D. PLoS One Research Article Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo. Public Library of Science 2013-06-03 /pmc/articles/PMC3670927/ /pubmed/23755179 http://dx.doi.org/10.1371/journal.pone.0065118 Text en © 2013 Sharma et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sharma, Naveen Sequea, Donel A. Castorena, Carlos M. Arias, Edward B. Qi, Nathan R. Cartee, Gregory D. Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title | Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title_full | Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title_fullStr | Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title_full_unstemmed | Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title_short | Heterogeneous Effects of Calorie Restriction on In Vivo Glucose Uptake and Insulin Signaling of Individual Rat Skeletal Muscles |
title_sort | heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670927/ https://www.ncbi.nlm.nih.gov/pubmed/23755179 http://dx.doi.org/10.1371/journal.pone.0065118 |
work_keys_str_mv | AT sharmanaveen heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles AT sequeadonela heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles AT castorenacarlosm heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles AT ariasedwardb heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles AT qinathanr heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles AT carteegregoryd heterogeneouseffectsofcalorierestrictiononinvivoglucoseuptakeandinsulinsignalingofindividualratskeletalmuscles |