Cargando…

‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This ‘laser chemistry’ approach, initially applied by our group to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Seral-Ascaso, Andrés, Garriga, Rosa, Sanjuán, María Luisa, Razal, Joselito M, Lahoz, Ruth, Laguna, Mariano, de la Fuente, Germán F, Muñoz, Edgar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671196/
https://www.ncbi.nlm.nih.gov/pubmed/23679938
http://dx.doi.org/10.1186/1556-276X-8-233
Descripción
Sumario:Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This ‘laser chemistry’ approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications.