Cargando…

The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

Helping students understand “chemical energy” is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sourc...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, Melanie M., Klymkowsky, Michael W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Cell Biology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671656/
https://www.ncbi.nlm.nih.gov/pubmed/23737636
http://dx.doi.org/10.1187/cbe.12-10-0170
Descripción
Sumario:Helping students understand “chemical energy” is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K–12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems.