Cargando…

NMDA-Receptor Activation but Not Ion Flux Is Required for Amyloid-Beta Induced Synaptic Depression

Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ) in the etiology of Alzheimer’s disease. Historically, AD research has mainly focused on the long-...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamburri, Albert, Dudilot, Anthony, Licea, Sara, Bourgeois, Catherine, Boehm, Jannic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672194/
https://www.ncbi.nlm.nih.gov/pubmed/23750255
http://dx.doi.org/10.1371/journal.pone.0065350
Descripción
Sumario:Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ) in the etiology of Alzheimer’s disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aβ depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aβ dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor.