Cargando…
Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo
Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672791/ https://www.ncbi.nlm.nih.gov/pubmed/23369655 http://dx.doi.org/10.1186/ar4138 |
Sumario: | Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. |
---|