Cargando…

Formaldehyde Gas Sensors: A Review

Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Po-Ren, Tzeng, Chun-Ta, Ke, Ming-Tsun, Lee, Chia-Yen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673094/
https://www.ncbi.nlm.nih.gov/pubmed/23549368
http://dx.doi.org/10.3390/s130404468
Descripción
Sumario:Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly-trained operators. Accordingly, the emergence of sophisticated technologies in recent years has prompted the development of many microscale gaseous formaldehyde detection systems. Besides their compact size, such devices have many other advantages over their macroscale counterparts, including a real-time response, a more straightforward operation, lower power consumption, and the potential for low-cost batch production. This paper commences by providing a high level overview of the formaldehyde gas sensing field and then describes some of the more significant real-time sensors presented in the literature over the past 10 years or so.