Cargando…
rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments
Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine–Dalgarno (SD) sequences have a major global effect on translation rates in bacteria:...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673220/ https://www.ncbi.nlm.nih.gov/pubmed/23603333 http://dx.doi.org/10.1093/bioinformatics/btt184 |
Sumario: | Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine–Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide evidence that in addition to pausing effect, internal SD sequences induce a caterpillar-like movement of mRNA through the ribosome cavity. Once an SD site binds to the ribosome, it remains attached to it while the ribosome decodes a few subsequent codons. This leads to asymmetric progressive elongation of ribosome footprints at the 3′-end. It is likely that internal SD sequences induce a pause not on a single, but on several adjacent codons. This finding is important for our understanding of mRNA movement through the ribosome and also should facilitate interpretation of ribosome profiling data. Contact: brave.oval.pan@gmail.com |
---|