Cargando…

rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments

Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine–Dalgarno (SD) sequences have a major global effect on translation rates in bacteria:...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Connor, Patrick B. F., Li, Gene-Wei, Weissman, Jonathan S., Atkins, John F., Baranov, Pavel V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673220/
https://www.ncbi.nlm.nih.gov/pubmed/23603333
http://dx.doi.org/10.1093/bioinformatics/btt184
Descripción
Sumario:Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine–Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide evidence that in addition to pausing effect, internal SD sequences induce a caterpillar-like movement of mRNA through the ribosome cavity. Once an SD site binds to the ribosome, it remains attached to it while the ribosome decodes a few subsequent codons. This leads to asymmetric progressive elongation of ribosome footprints at the 3′-end. It is likely that internal SD sequences induce a pause not on a single, but on several adjacent codons. This finding is important for our understanding of mRNA movement through the ribosome and also should facilitate interpretation of ribosome profiling data. Contact: brave.oval.pan@gmail.com