Cargando…
A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application
This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673420/ https://www.ncbi.nlm.nih.gov/pubmed/27879824 |
_version_ | 1782272253095837696 |
---|---|
author | Takahata, Kenichi Gianchandani, Yogesh B. |
author_facet | Takahata, Kenichi Gianchandani, Yogesh B. |
author_sort | Takahata, Kenichi |
collection | PubMed |
description | This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. |
format | Online Article Text |
id | pubmed-3673420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36734202013-07-02 A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application Takahata, Kenichi Gianchandani, Yogesh B. Sensors (Basel) Full Research Paper This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. Molecular Diversity Preservation International (MDPI) 2008-04-02 /pmc/articles/PMC3673420/ /pubmed/27879824 Text en © 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. |
spellingShingle | Full Research Paper Takahata, Kenichi Gianchandani, Yogesh B. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title | A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title_full | A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title_fullStr | A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title_full_unstemmed | A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title_short | A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application |
title_sort | micromachined capacitive pressure sensor using a cavity-less structure with bulk-metal/elastomer layers and its wireless telemetry application |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673420/ https://www.ncbi.nlm.nih.gov/pubmed/27879824 |
work_keys_str_mv | AT takahatakenichi amicromachinedcapacitivepressuresensorusingacavitylessstructurewithbulkmetalelastomerlayersanditswirelesstelemetryapplication AT gianchandaniyogeshb amicromachinedcapacitivepressuresensorusingacavitylessstructurewithbulkmetalelastomerlayersanditswirelesstelemetryapplication AT takahatakenichi micromachinedcapacitivepressuresensorusingacavitylessstructurewithbulkmetalelastomerlayersanditswirelesstelemetryapplication AT gianchandaniyogeshb micromachinedcapacitivepressuresensorusingacavitylessstructurewithbulkmetalelastomerlayersanditswirelesstelemetryapplication |