Cargando…
Improving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion
Empirical mode decomposition (EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines (SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673427/ https://www.ncbi.nlm.nih.gov/pubmed/27879831 |
Sumario: | Empirical mode decomposition (EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines (SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show that the proposed method is superior to the fusion methods based on à-trous wavelet transform (AWT) and EMD in terms of quantitative analyses by Root Mean Squared Error (RMSE) and Mutual Information (MI). |
---|