Cargando…
Improving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion
Empirical mode decomposition (EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines (SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show t...
Autores principales: | Chen, Shaohui, Su, Hongbo, Zhang, Renhua, Tian, Jing, Yang, Lihu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673427/ https://www.ncbi.nlm.nih.gov/pubmed/27879831 |
Ejemplares similares
-
The Tradeoff Analysis for Remote Sensing Image Fusion Using Expanded Spectral Angle Mapper
por: Chen, Shaohui, et al.
Publicado: (2008) -
Correction: Chen, S. et al. The Tradeoff Analysis for Remote Sensing Image Fusion Using Expanded Spectral Angle Mapper.
por: Chen, Shaohui, et al.
Publicado: (2012) -
Effective Multifocus Image Fusion Based on HVS and BP Neural Network
por: Yang, Yong, et al.
Publicado: (2014) -
Multifocus Image Fusion Using Wavelet-Domain-Based Deep CNN
por: Li, Jinjiang, et al.
Publicado: (2019) -
Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine
por: Krupa, Niranjana, et al.
Publicado: (2011)