Cargando…
Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions int...
Autores principales: | Li, Yi-Ou, Eichele, Tom, Calhoun, Vince D., Adali, Tulay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673747/ https://www.ncbi.nlm.nih.gov/pubmed/23750290 http://dx.doi.org/10.1007/s11265-010-0572-8 |
Ejemplares similares
-
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
por: Du, Wei, et al.
Publicado: (2012) -
Resting-State fMRI Dynamics and Null Models: Perspectives, Sampling Variability, and Simulations
por: Miller, Robyn L., et al.
Publicado: (2018) -
Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
por: Michael, Andrew M., et al.
Publicado: (2014) -
Identification of Homogeneous Subgroups from Resting-State fMRI Data
por: Yang, Hanlu, et al.
Publicado: (2023) -
Structured sparse multiset canonical correlation analysis of simultaneous fNIRS and EEG provides new insights into the human action-observation network
por: Dashtestani, Hadis, et al.
Publicado: (2022)